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Abstract. Several models have been introduced KO cons1ruct random packings of identical 
spheres. The packings arc built on a horizontal basal layer using iterative sequential 
algorithms in which a new added sphere is always in contact with three other spheres in 
the packing. In the Bennet model the position with the lowest vertical coordinate is selected. 
In the 'anti-Bennet' model, only positions that are stable under gravity are considered. and 
that with the highest vertical coordinate is selected. In the Eden model the new sphere is 
selected at random among all the possiblities and, in the 'stable Eden' model, the random 
choice is limited to positions that are stable under gravity. In  all cases, the density (packing 
fraction) is determined within an uncertainty of +IO-'. The histogram for the number of 
contacts between spheres, the bond angle distribution and the distance distribution were 
also determined. The results are compared with corresponding ballistic model results 

1. Introduction 

Both computer and physical models in which discs or spheres are packed together to 
form contracting random assemblies have been used extensively to represent the 
structure of liquids and glasses [ 1-71, to provide structural models to study phenomena 
such as electrical conductivity [&lo], fluid flow [ll-131, stress distribution [14-171 
and other mechanical properties in granular materials. Similar models have also been 
used to investigate processes such as sintering [lo,  18, 191. 

In many cases the algorithms used to generate random packings can be viewed as 
irreversible growth models in which spheres are added sequentially to the packing. 
Therefore the recent progresses towards understanding irreversible growth and aggrega- 
tion phenomena E201 can provide interesting new ideas on the construction of random 
packings and how to study their properties. One of these algorithms, the ballistic 
deposition model [21-251, has already been extensively studied by us and used to 
describe penetration [24] and segregation effects [25]. In this paper we describe some 
other sequential procedures, often inspired by old ideas [3, 261. The common feature 
is that, as in  the ballistic model, the packing is built sequentially such that the last 
added sphere is always in contact with three other spheres in the packing. This ensures 
that the mean number of contacts per sphere is strictly equal to six inside the bulk of 
all the packings. In all these procedures, we use a 'strip' geometry in which the packing 
is built from a basal first layer and grows in a direction perpendicular to the plane, 
with periodic boundary conditions at the edges of the strip. This allows us to build 
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considerably larger packing than was possible in the past and thus to calculate their 
characteristics such as density (or packing fraction), contact number histograms, bond 
angle distribution, with a great accuracy. 

2. Description of the models 

l.. "11 ,.,."e" ..,_ f.,.... " f r " r  I" . ._?  ,.f ":.... , " , ......4.. ^C r 2  -..L---" n,. I-^_- ---..., 
111 Llll uCaa=jD, w c  2 L P I L  I L " 1 . l  .a 111aL L S L J C L  "L > I L C  L A  L. ,,,a"G "1 L SJJ, ,C, 'S.  ,,,G ,,U,,'u,,la, 

projections of their centres are disposed on a square lattice with lattice spacing equal 
to the sphere diameter, taken equal to unity. This first layer is randomly disordered 
from a purely horizontal plane by adding random vertical displacements to the coordin- 
ates of all the spheres. The vertical coordinate zb of the centre of sphere i, j whose 
horizontal coordinates are x = i and y = j )  is taken to be: 

2.. = 86.. 
'I 'I 

where tg are random independent variables uniformly distributed between 0 and 1 
and S is a parameter which determines the intensity of the initial disorder. We have 
observed that all the characteristics of the resulting packings, measured far from the 
basal layer, do not depend on S if this parameter is different from zero and smaller 
than a critical value which would produce some 'holes' in the first layer that would 
make the procedure described below impossible. 

As soon as the first layer is built, the list of coordinates, x,,(k), y , (k ) ,  z , (k )  
, k,) for all the k, possible positions for the centre of a sphere is deter- 

mined. The coordinates in this list correspond to positions in which a new sphere 
contacts three spheres of the first layer and sits on these contacting spheres (i.e. the 
sphere centre must be above the plane made with the centres of the three contacting 
spheres). One of these positions k,, is chosen according to a given rule, which depends 
on the model, and the centre of the next sphere of the packing is placed at x,(k,), 
y,(k,),  z , (k , ) .  We then remove this ko position from the list of coordinates as well as 
all other positions which correspond to a sphere which would overlap the newly added 
sphere and we add to the list all the other possible positions for a sphere to be in 
contact with the new sphere and two other spheres of the packing. After the list has 
been updated and the new k ,  value has been calculated, we choose another position 
in the list according to the adopted rule and we proceed as before: a new sphere is 
added to the packing at  this position, the list of possible positions is updated and so 
on. During all steps in this iterative procedure, periodic boundary conditions are used 
in the two horizontal directions. 

The most time-consuming part of the algorithm is the updating of the list of possible 
positions. At this stage, both the spheres of the  packing as weii as the possibie positions 
which are in the neighbourhood of a given point must he determined. This can be 
efficiently done by storing both particles of the packings and possible positions in L2 
columns, labelled by i and j integers, both ranging from 1 to L. The coordinates of 
the centres of spheres of the packing and possible positions for the new spheres are 
stored into tables with three indices x ( i , j ,  m ) ,  y ( i , j ,  m ) ,  z ( i , j ,  m )  and x,,(i,j, m ) ,  
yo(;, j ,  m ) ,  zp(i, j ,  m j  respeciiveiy. 'Fnen iiiere is someiiiing in iht: coiumn, mi iuns from 
1 to a given, column-dependent, maximum value m m ( i , j )  of mm,,(i,j). The indices 
m m ( i , j )  and/or mm,( i , j )  are sei to zero when there is nothing in the i , j  column. 
Additional tables are used to make the correspondence between the one-index lists 
and the three-index lists for xp ,  y ,  and zD. The  particles of the packing are stored in 
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descending order in a given column and are discarded as soon as they are too far from 
the top to participate in particle addition. Then the search for a particle (or for a 
position) can be camed out efficiently using only a few columns. 

In some of our procedures, the list of possible positions has been restricted to 
‘stable’ positions, i.e. to positions for which, in a horizontal projection, the centre of 
the new sphere lies inside the triangle formed with the centres of the three contacting 
particles. The four different procedures that we have considered here are the following: 

(1) The ‘Bennet’ procedure: the lowest vertical position is always selected. This is 
a variant of a model first introduced by Bennet [3] in a spherical geometry (starting 
from a ‘seed and choosing the new position nearest to the seed). 

(2) The ‘anti-Bennet’ procedure: always the highest position is selected but the list 
is restricted to stable positions. 

(3) The ‘Eden’ procedure: the new position is selected at random among all the 
possiblities (i.e. k,= 1 +int(k,[), where [ is a random variable lying between zero and 
one and ‘int’ denotes the integer part). This is an off-lattice version of a model first 
introduced by Eden [26 ]  to study the growth of tumours and which has been extensively 
studied on lattices [20]. 

(4) The ’stable-Eden’ procedure: this is the same as the Eden procedure but the 
list is restricted to stable positions. 

All the results obtained with these models will be compared with similar results 
obtained with the ballistic deposition model. The algorithm for this model has been 
described elsewhere [23, 241. In this model, spheres are deposited along randomly 
positioned vertical trajectories and follow the path of steepest descent on the packing 
before reaching their final stable position in contact with three spheres of the packing. 

The following general comments concerning these models may be helpful before 
presenting the results: 

(i) The two first procedures (Bennet and anti-Bennet) are entirely deterministic. 
This means that the randomness of the packings comes only from the randomness 
originally put in the first layer. 

(ii) All procedures, except the Eden model, produce packings that are stable under 
gravity. 

(iii) It is essential to restrict the choice to stable positions in the anti-Bennet 
procedure. Without this restriction a single column is grown without entirely covering 
the base. 

3. Characteristics of the packings 

To make a qualitative comparison between the different models we show vertical cuts 
of packings built with L =  30 in figure 1 .  The total number of particles is the same in 
all cases so that the mean height of each packing gives an idea of its density. It is 
apparent that the Bennet model gives the most compact packing. However, due to 
surface roughness it  is difficult to discern if the least compact packing is obtained with 
the Eden or the anti-Bennet model. This figure also shows some interesting surface 
features that we have not quantitatively studied here. While the surface for the Bennet 
model is almost flat the surface of the anti-Bennet packing exhibits a characteristic 
conical shape and all the others are quite rough. 

The density p of each packing has been estimated from five independent simulations 
made with a lateral size of L = 60 up to a height of 3L. For each model the vertical 
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BALLISTIC 

EDEN 

BENNET ANTIBENNET 

STABLE EDEN 

Figure 1. Venical cuts through packings built with L=30.  All packings contain the same 
total number of particles. In the case of the anti-Bennet model the origin of the coordinate 
sy5tem has been translated so that the peak appears in the centre of the figure. 

density profile was measured. Sufficiently far from the top and bottom of the packing 
this density profile fluctuates about a constant mean value. The mean value in the 
central part of the profile was taken to be the packing density. The results are reported 
in table 1. In all cases, the uncertainty is of order 0.0001. The density varies between 
0.5447 for the least compact packing (Eden) and 0.6053 for the most compact (Bennet) 
the order with respect to the density being: Bennet > ballistic> anti-Bennet > stable 
Eden > Eden. 

Table 1. Numerical valiies of the densities p for the different packings. 

Ballistic Bennet Anti-Bennet Eden Stable Eden 

P 0.5812 0.6053 0.5745 0.5447 0.5719 
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We have also calculated the histogram f ( n )  for the number of contacts, n, per 
sphere. These histograms have been normalized such that X n f ( n )  = 1 and f(n) is the 
fraction of spheres having a given number of contacts n with other spheres in the 
packing. These numbers have also been calculated well inside the bulk, i.e. after 
eliminating the bottom and top parts of the packing. The results are reported in table 
2 and the corresponding histograms are shown in figure 2. In the ballistic case, our 
values for the f ( n ) s  are very close to older results [22]. It is worth noting that, since 
each added sphere contacts three previous ones, the mean number of contacts shouid 

Table 2. Numerical values o f  the fraction f ( n )  of spheres having n contacts with other 
spheres in the packing (the corresponding histograms are given in figure 2). 

Ballistic Bennet Anti-Bennet Eden Stable Eden 

/(3) 0.0006 
/(4) 0.0381 
f ( 5 )  0.2474 
f ( 6 )  0.4359 
/(7) 0.2329 
f(8) 0.0427 
f ( 9 )  0.0023 
/ ( lo)  2x10-5 
/ ( I l l  0.0 
/(I21 0.0 

0.0006 0.0009 
0.0282 0.0453 
0.2331 0.2508 
0.4749 0.4155 
0.2355 0.2351 
0.0273 0.0489 
0.0004 0.0035 
6x10-’ 6 x IO-J 
0.0 0.0 
0.0 0.0 

0.0180 
0.0992 
0.2351 
0.3049 
0.2243 
0.0948 
0.0215 
0.0022 
9 x 10-5 
3 x 10.6 

0.0016 
0.0529 
0.2489 
0.4000 
0.2376 
0.0546 
0.0042 
8 x 10-3 
0.0 
0.0 

Figure 2. Histograms for the number of  contacts. f ( n )  is the fraction of spheres having n 
 contact^ with other spheres in the packing. 
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be strictly equal to six. This has been verified by our results where for all packings we 
have found 

1 nf(n)=6*0.001. 

As expected, since there are at least three contacts per sphere, we have found that, 
for all packings, f( 1) =f(2) = 0. It is interesting to observe that there is a finite fraction 
of spheres with only three contacts. Since the evaluation of the contact populations 
f ( n )  has been done within the bulk of the packing, this means that there are cavities 
(which are stable under gravity) and these spheres sit inside such cavities without any 
contact with the spheres above. It can be shown on typical examples that such may 
exist. In particular they can be easily obtained when depositing spheres onto any array 
of identical spheres whose centres form a weakly disordered horizontal square lattice 
(i.e. the 100 plane of a slightly disordered face-centred cubic structure). 

While it is a priori possible to put up to 12 spheres in contact with another one, 
we have never found mnre than 10 contacts for any of the packings except in the Eden 
case where f (  11) -9 x lo-' and f (12)  - 3 x This Eden packing, which is the only 
one to be unstable under gravity, appears to be quite different from the others since, 
while its density is very low, the most compact local arrangement ( n  = 12) is sometimes 
realized. Thus there must exist very large density fluctuations in this packing. 

We have observed a direct correiation between the density and the number of 
spheres with six contacts. This is shown in figure 3 where we have plotted p as a 
function off(6). However, it appears that there is no simple relationship betweeen p 
and f ( 6 ) .  While all stable packings lie on a quasi-parabolic curve with a minimum 
around 0.57, the Eden packing appears again to be in a singular situation. 

As a further analysis of the contacts between spheres, we have counted, among all 
spheres having the same number n of contacts, the proportion x ( n )  of them that can 
be freely displaced, i.e. that have all their contacts located within a single hemisphere. 
The sum X = E , f ( n ) x ( n )  gives the fraction of single spheres that are unstable when 

... 

O 6 '  1 
0.60 1 

a 

0.58 

0.57 

0.55 

O.54 . 
0,56/m , , , , , , , 

0.30 0.35 0.40 0.45 0.50 

f(6) 
Figure 3. Plot of the density p as a function of the fraction of spheres with six contacts 
f(6). Each point corresponds to a given packing. 
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turning the packing up-side down (we have not done the same analysis for clusters of 
spheres). The numerical values for x ( n )  and X are reported in table 3 for each packing. 
If we forget the relatively large X value obtained for the least dense Eden packing, 
all the other X-values are of the order 0.050-0.056 with no clear relation to the density. 

We also determined the distribution of angles with the vertical for the lines joining 
the centres of two spheres in contact, for all pairs of contacting spheres in the packing. 
This distribution was calculated in two steps. During the growth process (as soon as 

we have recorded the three angles 'pj between the vector U and MM., where U is the 
(downward pointing) vertical unit vector, and constructed the histogram for all spheres 
within regularly spaced ranges of cos 'p values. Doing so, we directly obtained the 
distribution Q ( ' p ) ,  ranging between 'p=O and q = ~ ,  such that the quantity 
Q ( q )  sin q d q  is proportional the number of bonds whose angle with the vertical lies 
between 'p and q + d q .  The distribution Q(p) was normalized to unity: 

.1 - e . . . ~ - h a ~ a ~ f c m - + . a  X X  ..." .-..+:- ,-,..dn,+...:tl. rL-nao-La-ae ,.F..a..t-..- % X  bf 'x ..CW "y'.".' Y. lrllllr 1.1 WL1D y " L  111 CUL.,LIbL WLL,, u,,rr " y L 1 c L c "  U, CCllLlCJ 'N,, "'2'.'3,. 

Q ( q )  sin 'p d'p = 1. 

Then the final distribution P ( 0 )  for the angle 0 between U and the non-oriented bond 
diredtion (O< 8 < n/2)  can be deduced from Q ( q )  by 

- P , n l = n l n l + n , , - f l ) .  \", _ \ " I ,  Y , . .  

The distributions Q ( q )  and P ( 0 )  are reported in figure 4. 
In general, the bond angle distribution Q ( q )  contains a single maximum whose 

intensity decreases when going from the most compact to the least compact packing. 
Each packing has its own characteristics which is reflected by the precise shape of 
Q ( 9 )  and P ( 0 ) .  In  particular, the anti-Bennet case is very different from the others: 
the maximum of Q ( q )  is located at a very low 4 value (20") and there are significant 
shoulders near 50" and 90". In the Bennet case, where the density is the highest and 
where the histogram of contact is remarkably symmetric, the bond angle distribution 
tends to zero for 'p = 0 and 'p = 90" and is strictly equal to zero for 'p > 90", so that, in 
this case (and in this case only) there is no difference between P(B) and Q('p). This 
means that, in the Bennet procedure, the lowest position with three contacts never 
includes 'pointing up' contacts with higher spheres. It is also interesting to observe 
that the less compact packing, which corresponds to the Eden procedure, is nearly 
isotropic, since P ( 0 )  is almost equal to one over the whole range of 0 values. However, 
we have checked, by varying the size and the height of the packing, that the difference 

Table 3. Numerical values o f t h e  fraclion I(") of spheres with n contacts having all their 
contacts located within a hemisphere. The value of X = Z , , f ( n ) x ( n )  is reported in the last 
TOW. 

Ballistic Bennet Anti-Bennet Eden Stable Eden 

xi31 I I 1 I I 
x(4) 0.4710 0.6352 0.3978 0.7072 0.4010 
x(5) 0.1069 0.1361 0.1020 0.3407 0.1059 
xi61 O . O i i i  O.OOB3 O . O i i 4  O.lO4j O . O i b 3  
x(7)  0.0007 0.0004 0.0008 0.0019 0.0008 
x(8) 0.0 0.0 0.0 0.0004 0.0 
X 0.0498 0.0546 0.0498 0.205 0.0561 
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'1 0 Ballistic 
* Bennet 
* Antibennet 

m- * Stable Eden 
- 
a 

I 

0 
0 IS 30 4s 60 7s 9 0 

e 

_- I - 
m - .  a 

I -  

n -  

Figure 4. Band angle distributions Q(qJ and P ( 8 )  (see text) 

from one is significant, so that, even if the growth rules are isotropic (they do  not refer 
to the direction of gravity) there remain a small but significant anisotropy due to the 
well defined growth direction determined by the initial conditions. 

We have also calculated the inter-distance distribution function g(r) and the results 
are reponed in figure 5 for each packing. We note that 4 rg( r ) r2  d r  is proportional to 
the number of interparticle distances lying between r and r+dr .  In figure 5 ,  r is 
measured in units of the sphere diameter and g ( r )  is normalized in order that g ( r ) -  I 
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when r +  a. There is obviously a ‘delta’ peak at r = 1 which cannot be represented on 
such a plot. When r tends to 1 from above, g ( r )  tends to a constant whose intensity 
is larger if the density of the packing is larger. This result can he expected since this 
constant is related to the number of spheres in close contact to a given sphere: it is a 
measure of some kind of ‘local density’. We always observe a marked discontinuity at 
r = 2 and a smaller one at r = &, except in the Eden case where they are both of the 
same order of magnitude. The geometrical origins of such discontinuities have been 
extensively discussed in Bennet’s paper [3]. We can also notice that the g ( r )  oscillations 
persist up to larger r values in the Bennet case indicating that the correlation length 
is larger for denser packings. 

4. Discussion and conclusion 

We have obtained densities ranging from 0.5447 to 0.6053 for different random packings 
with the same mean coordination number ( n )  = 6 .  These results clearly demonstrate 
that the density of a random packing does not only depend on the mean coordination 
number. However, in the literature, there exists a theoretical formula, due to Dixmier 
[27], which reads 

In the case ( n )  = 6,  this formula gives p = 4/7 = 0.5714, a value located within the range 
of values obtained here and very close to the density 0.5719 obtained with the stable 
Eden procedure which corresponds to the least compact packing that is stable under 
gravity. We have already extensively discussed the validity of this formula [28] and 
we have reached the conclusion that it must hold under the following conditions: 

(i) The packing is isotropic. 
(ii) The distribution for the lengths of ‘chords’ (segments obtained when cutting 

the spheres by random straightlines) is strictly exponential. 
Consequently, the Dixmier’s formula cannot apply in our case since all our packings 

are anisotropic (as shown by the results on the bond angle distributions). However, 
in the case of the ballistic model, we have numerically found that the chord distribution, 
calculated for a given chord direction, is remarkably exponential for all chord directions. 
We intend to extend such calculations to the other packings, and in particular to the 
most isotropic ones, i.e. Eden and stable Eden. It is expected that the chord distribution 
of the quasi-isotropic Eden packing should exhibit strong deviations from a pure 
exponential since its density is considerably lower than 417. Moreover, it would be 
interesting to understand why the stable Eden packing fits nicely the Dixmier value 
p=4/7.  

In reference to the general classification for random packings [29-311, our densities 
correspond to very loose (in the case of the Eden packing) or loose (in all the other 
cases) random packings. We have tried to use many other sequential rules to build 
more compact packings than the Bennet one but did not succeed. It may be that it is 
necessary to abandon sequential procedures to reach larger densities. 
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